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Abstract: The paper presents the issue position/force control of a manipulator in contact with the flexible environment. It consists of the 
realisation of manipulator end-effector motion on the environment surface with the simultaneous appliance of desired pressure on the sur-
face. The paper considers the case of a flexible environment when its deformation occurs under the pressure, which has a significant influ-
ence on the control purpose realisation. The article presents the model of the controlled system and the problem of tracking control with 
the use of neural networks. The control algorithm includes contact surface flexibility in order to improve control quality. The article presents 
the results of numerical simulations, which indicate the correctness of the applied control law. 
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1. INTRODUCTION 

The number of industrial applications, in which robots come in 
contact with the environment and where it has a significant influ-
ence on the robotised processes realisation quality, is constantly 
increasing (Birglen and Schlicht, 2018; Denkena et al. 2017; 
Hashemiet et al., 2013; Iglesias et al., 2015; Lotz et al., 2014; 
Mendes and Neto, 2015). The aforementioned processes include, 
among others, robotised mechanical processing such as grinding 
(Zhu et al., 2015), polishing (Gracia et al., 2018; Tian et al., 2016), 
or edge deburring (Burghardt et al., 2017b). Therefore, modelling 
and control of robots in interaction with the environment becomes 
crucial, particularly if the actual features of the environment are 
taken into account, such as flexibility or damping. Manipulator-
environment system modelling is a complex issue, and the weak-
est point of the model is partly connected with the environment 
and model of manipulator’s contact with the surface. A significant 
difficulty in environment modelling is its changeability and the lack 
of certainty or knowledge of its parameters, resulting from the 
geometrical complexity of structures with which the manipulator 
interacts, related to changing stiffness, damping and mass bal-
ance in various parts of the structure. Moreover, environment 
surface shape may be not known in detail, which increases sys-
tem description uncertainty (Burghardt et al., 2017a; Capisani and 
Ferrara, 2012; Duan et al., 2018; Jafari and Ryu, 2016; Pliego-
Jiménez and Arteaga-Pérez, 2015; Ravandi et al., 2018). 

The paper presents the issue of manipulator position/force 
control in contact with an environment, taking into consideration 
its crucial feature, which is flexibility. The issue of position/force 
control itself consists of the realisation of manipulator end-effector 
motion on the environment surface with the simultaneous appli-
ance of desired pressure on the surface (Gierlak, 2014; Hendzel 
et al., 2014). End-effector motion speed and pressure force result 
from technological process parameters. In the case of a deforma-

ble environment, its deformation occurs under pressure, which 
has a significant influence on control purpose realisation Thus, in 
order to improve control quality, control algorithm takes into con-
sideration the contact surface flexibility. The paper used artificial 
neural networks (Gierlak, 2012; Żylski and Gierlak, 2010) to real-
ise control compensating system non-linearity, thanks to which, it 
is not necessary to know the structure and the parameters of the 
manipulator and environment models. 

2. SYSTEM DYNAMICS 

Manipulator dynamics expressed via configuration coordinates 
have the following formula: 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐹(𝑞̇) + 𝐺(𝑞) + 𝜉(𝑡) 

= 𝑢 + 𝐽(𝑞)𝑇𝜆 , (1) 

where: 𝑞 ∈ 𝑅𝑛 – the vector of generalised coordinates, 𝑀(𝑞) ∈
𝑅𝑛×𝑛 – the inertia matrix, 𝐶(𝑞, 𝑞̇)𝑞̇ ∈ 𝑅𝑛×𝑛 – the vector of 

centrifugal and Coriolis forces, 𝐹(𝑞̇) ∈ 𝑅𝑛 – the friction vector, 
𝐺(𝑞) ∈ 𝑅𝑛 – the gravity vector, 𝜉(𝑡) ∈ 𝑅𝑛 – the vector of dis-

turbances bounded by ‖𝜉‖ ≤ 𝑏, 𝑏 > 0, 𝑢 ∈ 𝑅𝑛 – the control 

input vector, 𝐽(𝑞) ∈ 𝑅𝑚×𝑛 – an analytical Jacobian matrix, 
𝜆 ∈ 𝑅𝑚 – an interaction force vector expressed in the task space, 

𝑛 – the number of degrees of freedom of the manipulator, 𝑚 – a 
workspace (task space) dimension. 

Due to the control purpose, which is the manipulator end-
effector motion on the environment surface with simultaneously 
influencing it with normal force, it is convenient to present manipu-
lator dynamics in a task coordinate system related to the environ-

mental surface. Cartesian coordinates 𝑐 were selected as task 
coordinates, which are related to the configuration coordinates in 
the following way: 
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𝑐 = 𝑘(𝑞) ∈ 𝑅𝑚 , (2) 

where: 𝑘(𝑞) is the so-called kinematics function. Jacobian 𝐽(𝑞) 
describing the transformation of forces and speeds between the 
task space and the configuration spaces results from the formula: 

𝐽(𝑞) =
𝜕𝑐

𝜕𝑞
=

𝜕𝑘(𝑞)

𝜕𝑞
 . (3) 

On the basis of equations (1) and (2), manipulator dynamics 
were described in task coordinates (Gierlak, 2018; Gierlak and 
Szuster, 2017) 

𝐴(𝑞)𝑐̈ + 𝐻(𝑞, 𝑞̇)𝑐̇ + 𝐵(𝑞, 𝑞̇) + 𝐺(𝑞, 𝑞̇) + 𝛹(𝑞, 𝑡) 

= 𝑈 + 𝜆 . (4) 

where specific vectors and matrices are as follows: 

𝐽−𝑇𝑀(𝑞)𝐽−1 = 𝐴(𝑞) ∈ 𝑅𝑚×𝑚

𝐽−𝑇𝐶(𝑞, 𝑞̇)𝐽−1 − 𝐽−𝑇𝑀(𝑞)𝐽−1𝐽𝐽̇−1 = 𝐻(𝑞, 𝑞̇) ∈ 𝑅𝑚×𝑚

𝐽−𝑇(𝐹(𝑞̇) + 𝐺(𝑞)) = 𝐵(𝑞, 𝑞̇) ∈ 𝑅𝑚

𝐽−𝑇𝜉(𝑡) = 𝛹(𝑞, 𝑡) ∈ 𝑅𝑚

𝐽−𝑇𝑢 = 𝑈 ∈ 𝑅𝑚 }
 
 

 
 

 

 (5) 

and the expression 𝐽−𝑇 = (𝐽−1)𝑇 = (𝐽𝑇)−1. In the case of 
𝑚 ≠ 𝑛, the Moore-Penrose pseudo-inverse 𝐽+ instead of 𝐽−1 

should be used (Barata and Hussein, 2012). Task space {𝐶} was 

divided into 𝑟-dimensional normal subspace {𝑁} and (𝑚 − 𝑟)-
dimensional tangent subspace {𝑇}: {𝐶} = {𝑇}⨁{𝑁} (Vukobra-
tovič et al., 2002). It leads to the decomposition of vector 𝑐 into a 

part related to the tangent directions 𝑐𝜏 ∈ 𝑅
𝑚−𝑟 and a part relat-

ed to normal directions 𝑐𝑛 ∈ 𝑅
𝑟  so 𝑐 = [𝑐𝜏

𝑇 𝑐𝑛
𝑇]𝑇. Thus, it is 

now convenient to determine the environment features that are 
different on tangent and normal directions. For normal directions, 
the most important feature is flexibility, which is presented by the 
formula: 

𝐾𝑒𝑐𝑛 = 𝐹𝑒𝑛, (6) 

where: 𝐹𝑒𝑛𝑅
𝑟  – a normal force vector, 𝐾𝑒𝑅

𝑟×𝑟  – diagonal 

matrix of environment stiffness, so 𝐾𝑒 = 𝐾𝑒
𝑇 > 0. On tangent 

directions, manipulator end-effector motion is hindered by resist-

ing force 𝐹𝑒𝜏, which may be modelled or compensated for on the 
basis of force detector measurements. Such an approach of 
interaction between the manipulator and the environment allows 

expressing interaction forces vector as 𝜆 = [𝐹𝑒𝜏
𝑇 𝐹𝑒𝑛

𝑇 ]𝑇. 
Equation (6) was transformed into a form 𝑐𝑛 = 𝑃𝑒𝐹𝑒𝑛, in 

which 𝑃𝑒 = 𝐾𝑒
−1 ∈ 𝑅𝑟×𝑟 is flexibility matrix; so, 𝑃𝑒 = 𝑃𝑒

𝑇 > 0. 
By adding decomposed vector 𝑐 (taking into consideration 

𝑐𝑛 = 𝑃𝑒𝐹𝑒𝑛) to equation (4), the dynamic equation of the system 
motion equation takes on the following form: 

𝐴(𝑞)𝐸𝜃̈ + 𝐻(𝑞, 𝑞̇)𝐸𝜃̇ + 𝐵(𝑞, 𝑞̇) + 𝛹(𝑞, 𝑡) = 𝑈 + 𝜆,  (7) 

where vector describing system state 𝜃 = [𝑐𝜏
𝑇 𝐹𝑒𝑛

𝑇 ]𝑇 ∈ 𝑅𝑚 

consists of position and force variables, while matrix 𝐸 has the 
following form: 

𝐸 = [
𝐼(𝑚−𝑟)×(𝑚−𝑟) 0

0 𝑃𝑒
] ∈ 𝑅𝑚×𝑚,  (8) 

and presents information on environment flexibility. Description (7) 

with vector 𝜃 is a more natural description of dynamics due to 
control purposes than equation (4), since the purpose of control of 
the presented system is to realise motion on tangent directions 
and to realise forces on normal directions. 

3. TRACKING CONTROL 

The purpose of control is to implement the desired trajectory 

𝜃𝑑(𝑡) ∈ 𝑅
𝑚, 𝜃̇𝑑(𝑡), 𝜃̈𝑑(𝑡), which consists of the trajectory of 

motion in the tangent plane 𝑐𝜏𝑑(𝑡) ∈ 𝑅
𝑚−𝑟, 𝑐̇𝜏𝑑(𝑡), 𝑐̈𝜏𝑑(𝑡) and 

the trajectory of force on normal directions 𝐹𝑒𝑛𝑑(𝑡) ∈ 𝑅
𝑟, 

𝐹̇𝑒𝑛𝑑(𝑡), 𝐹̈𝑒𝑛𝑑(𝑡). So, it can be noted in the following way: 

𝜃𝑑 = [
𝑐𝜏𝑑
𝐹𝑒𝑛𝑑

], 𝜃̇𝑑 = [
𝑐̇𝜏𝑑
𝐹̇𝑒𝑛𝑑

] , 𝜃̈𝑑 = [
𝑐̈𝜏𝑑
𝐹̈𝑒𝑛𝑑

]. (9) 

Tracking control was defined as an issue of stabilising tracking 
error, defined as: 

𝜃̃ = 𝜃𝑑 − 𝜃,  (10) 

that is, regarding both motion error and force error stabilisation. In 
accordance with the classic theory of tracking control of nonlinear 
systems, a filtered tracking error was defined: 

𝑠 = 𝜃̇̃ + 𝛬𝜃̃,  (11) 

which is a linear combination of tracking error and its derivative. In 
equation (11), project matrix 𝛬 ∈ 𝑅𝑚  occurs, which fulfils the 

condition 𝛬 = 𝛬𝑇 > 0. By adding equation (11) to formula (7), 
the description of the dynamics in the filtered tracking error func-
tion: 

𝐴(𝑞)𝐸𝑠̇ = −𝐻(𝑞, 𝑞̇)𝐸𝑠 + 𝐴(𝑞)𝐸𝑣̇ + 𝐻(𝑞, 𝑞̇)𝐸𝑣 +
𝐵(𝑞, 𝑞̇) + 𝛹(𝑞, 𝑡) − 𝑈 − 𝜆, (12) 

where ancillary variable 𝑣 = 𝜃̇𝑑 + 𝛬𝜃̃ occurs. Nonlinear part of 
equation (12) was marked as: 

𝐴(𝑞)𝐸𝑣̇ + 𝐻(𝑞, 𝑞̇)𝐸𝑣 + 𝐵(𝑞, 𝑞̇) = 𝑓,  (13) 

where 𝑓 ∈ 𝑅𝑚 is a function that depends both on the manipulator 
model and the environment. It particularly depends on the un-
known manipulator parameters and unknown environment stiff-
ness. Thus, the final form of the dynamic system motion descrip-
tion is: 

𝐴(𝑞)𝐸𝑠̇ = −𝐻(𝑞, 𝑞̇)𝐸𝑠 + 𝑓 + 𝛹(𝑞, 𝑡) − 𝑈 − 𝜆.  (14) 

For this system, the control consists of conventional PD regu-

lator, control compensating for system nonlinearity 𝑓 ∈ 𝑅𝑚, and 

control compensating for the interaction forces influence 𝜆: 

𝑈 = 𝐾𝐷𝑠 + 𝑓 − 𝜆 − 𝑟. (15) 

In the established control, function 𝑓 approximates 𝑓, and ex-

pression 𝐾𝐷𝑠 is a form of PD control where 𝐾𝐷 ∈ 𝑅
𝑚×𝑚 is an 

amplification matric that 𝐾𝐷 = 𝐾𝐷
𝑇 > 0, while 𝑟 ∈ 𝑅𝑚  is a robust 

control. A part of equation (15) expresses forces of interaction 
between the manipulator and the environment in all directions. It is 
assumed that its value is assessable via measurement and can 
be put in the control signal. Assessable via measurement are also 

vectors of angular displacements 𝑞 and angular speeds 𝑞̇, which, 
knowing kinematic equations (2), allow calculating motion pa-
rameters in task coordinates 𝑐. It is necessary to establish filtered 

tracking error 𝑠 and ancillary signal 𝑣 occurring in function 𝑓. In 

order to implement compensation of nonlinear function 𝑓, it was 

decomposed into two parts: one 𝑓𝜏 ∈ 𝑅
(𝑚−𝑟) for tangent direc-

tions, and the other 𝑓𝑛 ∈ 𝑅
𝑟  for normal directions. Neural network 

linear in regards to RVFL weights were used to approximate the 
member functions. This type of neural network is a universal 
approximator (Galushkin, 2007; Pao et al., 1994), which, due to 
relatively simple structure, is frequently used in robot control 
systems for nonlinearity compensation (Kumar et al., 2011). If the 
selected network is a network with a set layer of input weights, 
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one hidden layer, and input weights layer undergoing adaptation, 
then nonlinear member functions may be noted as outputs from 
the ideal neural networks with limited approximation errors: 

𝑓 = [
𝑓𝜏
𝑓𝑛
] =

[
 
 
 
 
 

𝑊𝜏
𝑇𝛷𝜏(𝑥𝜏) + 𝜀𝜏(𝑥𝜏)

𝑊𝑛1
𝑇 𝛷𝑛1(𝑥𝑛1) + 𝜀𝑛1(𝑥𝑛1)

⋮
𝑊𝑛𝑖

𝑇𝛷𝑛𝑖(𝑥𝑛𝑖) + 𝜀𝑛𝑖(𝑥𝑛𝑖)
⋮

𝑊𝑛𝑟
𝑇𝛷𝑛𝑟(𝑥𝑛𝑟) + 𝜀𝑛𝑟(𝑥𝑛𝑟) ]

 
 
 
 
 

 , (16) 

where: 𝑥𝜏, 𝑥𝑛𝑖 – network input signals vectors, 𝑊𝜏, 𝑊𝑛𝑖 – ideal 

output weights matrices, 𝛷𝜏(. ),𝛷𝑛𝑖(. ) are neurons activation 

functions vectors, and 𝜀𝜏, 𝜀𝑛𝑖 are vectors of errors of function 
mapping by networks that ‖𝜀𝜏‖ ≤ 𝜀𝑏𝜏, ‖𝜀𝑛𝑖‖ ≤ 𝜀𝑏𝑛𝑖, where 

𝜀𝑏𝜏 > 0, 𝜀𝑏𝑛𝑖 > 0. If neurons activation functions are selected in 
the form of a basic functions’ group, then the network with ideal 
limited weights has the feature of approximation of any function 
defined on a compact set with a finite number of discontinuity 
points (Hertz et al., 1991). Since network ideal weights are un-
known, function estimate (16) should be used, in form of: 

𝑓 = [
𝑓𝜏
𝑓𝑛
] =

[
 
 
 
 
 
𝑊̂𝜏

𝑇𝛷𝜏(𝑥𝜏)

𝑊̂𝑛1
𝑇 𝛷𝑛1(𝑥𝑛1)

⋮
𝑊̂𝑛𝑖

𝑇𝛷𝑛𝑖(𝑥𝑛𝑖)
⋮

𝑊̂𝑛𝑟
𝑇𝛷𝑛𝑟(𝑥𝑛𝑟)]

 
 
 
 
 

 , (17) 

where 𝑊̂𝜏, 𝑊̂𝑛𝑖 are network ideal weights estimates. As equation 

(16) suggests, each nonlinear function 𝑓𝑛 was decomposed into 

functions 𝑓𝑛𝑖, each of which corresponds to the normal 𝑖-th direc-
tion and is approximated by a separate neural network. This 
action was performed due to the possibility of proving closed 
system stability for network weights’ estimation rule not requiring 
knowledge of environment elasticity. 

Taking into account control rule (15), as well as equations (16) 
and (17) in the dynamics equation (14), the following closed sys-
tem description was received: 

𝐴(𝑞)𝐸𝑠̇ = −𝐻(𝑞, 𝑞̇)𝐸𝑠 + 𝛹(𝑞, 𝑡) − 𝐾𝐷𝑠 + 𝑟 +

[
 
 
 
 
 
𝑊̃𝜏

𝑇𝛷𝜏(𝑥𝜏)

𝑊̃𝑛1
𝑇 𝛷𝑛1(𝑥𝑛1)

⋮
𝑊̃𝑛𝑖

𝑇𝛷𝑛𝑖(𝑥𝑛𝑖)
⋮

𝑊̃𝑛𝑟
𝑇𝛷𝑛𝑟(𝑥𝑛𝑟)]

 
 
 
 
 

+

[
 
 
 
 
 
𝜀𝜏(𝑥𝜏)

𝜀𝑛1(𝑥𝑛1)
⋮

𝜀𝑛𝑖(𝑥𝑛𝑖)
⋮

𝜀𝑛𝑟(𝑥𝑛𝑟)]
 
 
 
 
 

 , (18) 

in which the interaction forces’ influence was compensated for by 

the control, so that vector 𝜆 no longer occurs in equation (18). 
Closed-loop system dynamics is activated by the assessment 
errors of network and weights, which are as follows: 

𝑊̃𝜏 = 𝑊𝜏 − 𝑊̂𝜏, 𝑊̃𝑛𝑖 = 𝑊𝑛𝑖 − 𝑊̂𝑛𝑖.  (19) 

The errors are decreased as a result of the weights estimates 
adaptation, which occurs continuously during system operation. 
Weights adaptation rules were accepted in the following form 
(Lewis et al., 1995; Narendra and Annaswamy, 1987; Polycarpou 
and Ioannu, 1991): 

𝑊̇̂𝜏 = 𝛤𝜏𝛷𝜏(𝑥𝜏)𝑠𝜏
𝑇 − 𝑘𝜏‖𝑠𝜏‖𝛤𝜏𝑊̂𝜏

𝑊̇̂𝑛𝑖 = 𝛤𝑛𝑖𝛷𝑛𝑖(𝑥𝑛𝑖)𝑠𝑛𝑖 − 𝑘𝑛𝑖|𝑠𝑛𝑖|𝛤𝑛𝑖𝑊̂𝑛𝑖

}, (20) 

where: 𝛤𝜏 = 𝛤𝜏
𝑇 > 0, 𝛤𝑛𝑖 = 𝛤𝑛𝑖

𝑇 > 0 – adaptation amplification 

matrices, 𝑘𝜏 > 0, 𝑘𝑛𝑖 > 0 – constant project parameters, 𝑠𝜏, 𝑠𝑛𝑖  
– results from the decomposition of filtered tracking error 𝑠 =
[𝑠𝜏
𝑇 𝑠𝑛

𝑇]𝑇, where 𝑠𝑛 = [𝑠𝑛1 … 𝑠𝑛𝑖 … 𝑠𝑛𝑟]𝑇. The 
second element on the right of formula (20) is responsible for 
‘attenuation’ of weights estimates adaptation, while the ‘attenua-
tion’ size is decided by the coefficients 𝑘𝜏 and 𝑘𝑛𝑖. Assuming 
such rules of weights estimates actualisation guarantees their 
limitedness and protects the system from estimates ‘drifting’ and 
‘exploding’, even without uniform system activation. When de-
composing interruptions vector and robust control in the following 
way: 

𝛹(𝑞, 𝑡) = [𝛹𝜏
𝑇(𝑞, 𝑡), 𝛹𝑛1(𝑞, 𝑡), … ,𝛹𝑛𝑖(𝑞, 𝑡), … ,𝛹𝑛𝑟(𝑞, 𝑡)]

𝑇 

and 𝑟 = [𝑟𝜏
𝑇 , 𝑟𝑛1, … , 𝑟𝑛𝑖 , … , 𝑟𝑛𝑟]

𝑇, specific expressions of ro-
bust control were assumed as: 

𝑟𝜏 = −
𝐾𝜏

‖𝑠𝜏‖
𝑠𝜏 , 𝑟𝑛𝑖 = −

𝐾𝑛𝑖

|𝑠𝑛𝑖|
𝑠𝑛𝑖 , (21) 

where: 𝐾𝜏 > 𝑏𝜏 ≥ ‖𝛹𝜏(𝑞, 𝑡)‖, 𝐾𝑛𝑖 > 𝑏𝑛𝑖 ≥ |𝛹𝑛𝑖(𝑞, 𝑡)|. 
Assumed neural networks control and weights adaptation 

rules guarantee the practical stability of the control system 
(Canudas et al., 1996). The proof of the stability is complex and 
was presented for a similar case by Gierlak and Szuster (2017) 
with regard to conditions given by Lewis et al. (1995), Narendra 
and Annaswamy (1987) and Polycarpou and Ioannu (1991). 

4. NUMERICAL EXAMPLE 

A two-link planar manipulator in contact with a flat surface was 
selected as an example presenting the work of control system of 
the manipulator in contact with a flexible environment (Fig. 1). 

Two-link manipulator dynamics in articulated coordinates is 
described with an equation in the following form (1) of the follow-
ing vectors and matrices (Gierlak and Szuster, 2017): 

𝑴(𝒒) = [
𝑎1 𝑎2cos(𝑞2 − 𝑞1)

𝑎2cos(𝑞2 − 𝑞1) 𝑎3
]

𝑪(𝒒, 𝒒̇) = [
0 −𝑎2sin(𝑞2 − 𝑞1)𝑞̇2

𝑎2sin(𝑞2 − 𝑞1)𝑞̇1 0
]

𝑭(𝒒̇) = [
𝑎4𝑞̇1 + 𝑎6sgn(𝑞̇1)

𝑎5𝑞̇2 + 𝑎7sgn(𝑞̇2)
]

𝑮(𝒒) = [
𝑎8cos(𝑞1)

𝑎9cos(𝑞2)
]

𝝃(𝑡) = [
𝜉1(𝑡)

𝜉2(𝑡)
]

𝒖 = [
𝑢1
𝑢2
]

𝒒 = [
𝑞1
𝑞2
] }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

  (22) 

Parameters characterising manipulator dynamics have the fol-
lowing significance: 

𝑎1 = 𝑙𝑐1
2 𝑚1 + 𝑙1

2𝑚2 + 𝐼1,

𝑎2 = 𝑙1𝑙𝑐2𝑚2, 𝑎3 = 𝑙𝑐2
2 𝑚2 + 𝐼2,

𝑎4 = 𝑐𝑣1, 𝑎5 = 𝑐𝑣2, 𝑎6 = 𝜅1, 𝑎7 = 𝜅2,

𝑎8 = (𝑙𝑐1𝑚1 + 𝑙1𝑚2)𝑔, 𝑎9 = 𝑙𝑐2𝑚2𝑔}
 

 

 .  (23) 

where: 𝑚𝑖 – a mass of 𝑖-th link, 𝑙𝑖 – a length of 𝑖-th link, 𝑙𝑐𝑖  – the 
distance between centre of mass of 𝑖-th link and end of 𝑖 − 1 link, 

𝐼𝑖  – a mass moment of inertia of 𝑖-th link relative to its centre  

of mass, 𝑐𝑣𝑖 – coefficient of viscous friction in 𝑖-th kinematic pair, 

𝜅𝑖 – moment of force of dry friction in 𝑖-th kinematic pair. 
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Fig. 1. The scheme of the 2-degrees-of-freedom manipulator  
            with environment 

Kinematic equation (2) describing manipulator end point posi-
tion in the analysed case assume the following form: 

𝒄 = [
𝑐𝜏
𝑐𝑛
] = [

𝑙1cos(𝑞1) + 𝑙2cos(𝑞2)

𝑙1sin(𝑞1) + 𝑙2sin(𝑞2)
]  (24) 

Knowledge of kinematics equations allows determining Jaco-

bian 𝐽(𝑞) and recording system dynamics in the task coordinates. 

On the basis of the definition (3), Jacobian 𝐽(𝑞) was determined 
as: 

𝐽(𝑞) = [
−𝑙1sin(𝑞1) −𝑙2sin(𝑞2)

𝑙1cos(𝑞1) 𝑙2cos(𝑞2)
].  (25) 

This enabled the presentation of robot dynamics in the form of 
equation (4), in which matrices and vectors have the following 
form: 

𝐴(𝑞) =
1

sin2(𝑞2−𝑞1)
[
𝐴11 𝐴12
𝐴21 𝐴22

], (26) 

𝐴11 =
cos2(𝑞2)

𝑙1
2 𝑎1 −

2cos(𝑞1)cos(𝑞2)cos(𝑞2−𝑞1)

𝑙1𝑙2
𝑎2 +

cos2(𝑞1)

𝑙2
2 𝑎3

𝐴12 = 𝐴21 =
sin(𝑞2)cos(𝑞2)

𝑙1
2 𝑎1 −

2sin(𝑞1+𝑞2)cos(𝑞2−𝑞1)

𝑙1𝑙2
𝑎2 +

sin(𝑞1)cos(𝑞1)

𝑙2
2 𝑎3

𝐴22 =
sin2(𝑞2)

𝑙1
2 𝑎1 −

2sin(𝑞1)sin(𝑞2)cos(𝑞2−𝑞1)

𝑙1𝑙2
𝑎2 +

sin2(𝑞1)

𝑙2
2 𝑎3 }

  
 

  
 

 

 (27) 

𝐻(𝑞, 𝑞̇) =
1

sin3(𝑞2−𝑞1)
[
𝐻11 𝐻12
𝐻21 𝐻22

],  (28) 

𝐻11 =
𝑔1cos(𝑞2)

𝑙1
2 𝑎1 +

𝑔5cos(𝑞1)−𝑔6cos(𝑞2)

𝑙1𝑙2
𝑎2 +

𝑔2cos(𝑞1)

𝑙2
2 𝑎3

𝐻12 =
𝑔3cos(𝑞2)

𝑙1
2 𝑎1 +

𝑔5sin(𝑞1)−𝑔6sin(𝑞2)

𝑙1𝑙2
𝑎2 +

𝑔4cos(𝑞1)

𝑙2
2 𝑎3

𝐻21 =
𝑔1sin(𝑞2)

𝑙1
2 𝑎1 +

𝑔7cos(𝑞1)−𝑔8cos(𝑞2)

𝑙1𝑙2
𝑎2 +

𝑔2sin(𝑞1)

𝑙2
2 𝑎3

𝐻22 =
𝑔3sin(𝑞2)

𝑙1
2 𝑎1 +

𝑔7sin(𝑞1)−𝑔8sin(𝑞2)

𝑙1𝑙2
𝑎2 +

𝑔4sin(𝑞1)

𝑙2
2 𝑎3 }

  
 

  
 

 

 (29) 

𝑔1 = cos(𝑞2)cos(𝑞2 − 𝑞1)𝑞̇1 − cos(𝑞1)𝑞̇2
𝑔2 = cos(𝑞2)𝑞̇1 − cos(𝑞1)cos(𝑞2 − 𝑞1)𝑞̇2
𝑔3 = sin(𝑞2)cos(𝑞2 − 𝑞1)𝑞̇1 − sin(𝑞1)𝑞̇2
𝑔4 = sin(𝑞2)𝑞̇1 − sin(𝑞1)cos(𝑞2 − 𝑞1)𝑞̇2
𝑔5 = [cos(𝑞2) + cos(𝑞1)cos(𝑞2 − 𝑞1)]𝑞̇2
𝑔6 = [cos(𝑞1) + cos(𝑞2)cos(𝑞2 − 𝑞1)]𝑞̇1
𝑔7 = [sin(𝑞2) + sin(𝑞1)cos(𝑞2 − 𝑞1)]𝑞̇2
𝑔8 = [sin(𝑞1) + sin(𝑞2)cos(𝑞2 − 𝑞1)]𝑞̇1 }

 
 
 
 

 
 
 
 

,  (30) 

𝐵(𝑞, 𝑞̇) = [

𝑙2cos(𝑞2)[𝑎4𝑞̇1+𝑎6cos(𝑞1)]−𝑙1cos(𝑞1)[𝑎5𝑞̇2+𝑎7cos(𝑞2)]

𝑙1𝑙2sin(𝑞2−𝑞1)

𝑙2sin(𝑞2)[𝑎4𝑞̇1+𝑎6cos(𝑞1)]−𝑙1sin(𝑞1)[𝑎5𝑞̇2+𝑎7cos(𝑞2)]

𝑙1𝑙2sin(𝑞2−𝑞1)

] 

 (31) 

𝑈 = [

𝑙2cos(𝑞2)𝑢1−𝑙1cos(𝑞1)𝑢2(𝑡)

𝑙1𝑙2sin(𝑞2−𝑞1)

𝑙2sin(𝑞2)𝑢1(𝑡)−𝑙1sin(𝑞1)𝑢2(𝑡)

𝑙1𝑙2sin(𝑞2−𝑞1)

],  (32) 

𝛹(𝑞, 𝑡) = [

𝑙2cos(𝑞2)𝜉1(𝑡)−𝑙1cos(𝑞1)𝜉2(𝑡)

𝑙1𝑙2sin(𝑞2−𝑞1)

𝑙2sin(𝑞2)𝜉1(𝑡)−𝑙1sin(𝑞1)𝜉2(𝑡)

𝑙1𝑙2sin(𝑞2−𝑞1)

].  (33) 

In the analysed case, constant disturbance values were as-
sumed as 𝜉1(𝑡) = 𝜉2(𝑡) = 𝜉 = 𝑐𝑜𝑛𝑠𝑡. Forces of interaction 
between the manipulator and the environment are assumed as: 

𝜆 = [
𝐹𝑒𝜏
𝐹𝑒𝑛
] = [

𝜇𝐹𝑒𝑛sgn(𝑐̇𝜏)

𝐾𝑒𝑐𝑛
].  (34) 

In the analysed example, the contact surface is one-
dimensional, thus, there is only one tangent direction, along which 
the end-effector motion can occur. The flexibility of the surface 

also occurs only in one normal direction. Therefore, the matrix 𝐸 
has a form: 

𝐸 = [
1 0
0 𝑃𝑒

],  (35) 

where 𝑃𝑒 = 𝐾𝑒
−1. 

The control law equation (15) contains the interaction forces 
vector 𝜆 defined by the formula (34) and the gain matrix in the 
form: 

𝐾𝐷 = [
𝐾𝐷𝜏 0
0 𝐾𝐷𝑛

].  (36) 

The filtered tracking error 𝑠 taking into account the diagonal 

matrix 𝛬 = 𝑑𝑖𝑎𝑔{𝛬𝜏 𝛬𝑛}, has the form: 

𝑠 = [
𝑠𝜏
𝑠𝑛
] = [

𝑐̃ ̇ 𝜏 + 𝛬𝜏𝑐̃𝜏

𝐹̃ ̇ 𝑒𝑛 + 𝛬𝑛𝐹̃𝑒𝑛
],  (37) 

where 𝑐̃𝜏 – the position error in the tangent direction, 𝐹̃𝑒𝑛 – the 
force error in the normal direction. The components of the robust 
control vector determined by equation (21) have the form: 

𝑟𝜏 = −
𝐾𝜏

|𝑠𝜏|
𝑠𝜏, 𝑟𝑛 = −

𝐾𝑛

|𝑠𝑛|
𝑠𝑛.  (38) 

The most complex element of the control law (15) is the com-

pensative control 𝑓, the structure for which results from the ap-
plied neural network. Separate neural networks were used for the 
compensative control in the tangent and normal directions. The 

structure of the neural network that generates the output 𝑓𝜏 is 
shown in Fig. 2. 

 
The input-output dependency of the presented neural network 

has the form: 

𝑓𝜏 = 𝑊̂𝜏
𝑇𝛷𝜏(𝑥𝜏) = 𝑊̂𝜏

𝑇𝑆𝜏(𝑉𝜏
𝑇𝑥𝜏)  (39) 

where: 𝛷𝜏(𝑥𝜏) = 𝑆𝜏(𝑉𝜏
𝑇𝑥𝜏) – the output vector from the hidden 

layer, 𝑆𝜏 = [𝑆𝜏1, 𝑆𝜏2, … , 𝑆𝜏𝑁]
𝑇 – the vector of neuron activation 

function, 𝑥𝜏 = [𝑥𝜏1, 𝑥𝜏2 , … , 𝑥𝜏𝑀]
𝑇 – the input vector, 𝑉𝜏

𝑇 – the 
input weights matrix, in which the values of weights of connection 

of inputs with the hidden layer were grouped, 𝑊̂𝜏
𝑇 – estimation of 

the output weight matrix, which contains the values of the weights 

of connections of the hidden layer with the network output 𝑓𝜏. 
Elements of this matrix are adapted during the system operation. 
An analogous structure of the neural network was used to gener-

ate the compensative control 𝑓𝑛 – in the description of this net-
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work, the denotation 𝑛 should be used instead of 𝜏. The input 
vectors for both neural networks have the same form, because the 
nonlinearities in the tangent and normal directions depend on the 

same signals, thus: 𝑥𝜏 = 𝑥𝑛 = [𝑞1, 𝑞2, 𝑞̇1, 𝑞̇2, 𝑣𝜏 , 𝑣𝑛 , 𝑣̇𝜏, 𝑣̇𝑛]
𝑇, 

where 𝑣𝜏 and 𝑣𝑛 are elements of the auxiliary signal 𝑣 =
[𝑣𝜏 , 𝑣𝑛]

𝑇, which was introduced in equations (12) and (13). The 
neuron activation functions were selected as sigmoidal bipolar 
functions described by the equation: 

𝑆𝜏𝑖 =
2

1+exp (−𝛽𝑧)
− 1,  (40) 

where: 𝛽 > 0 – the steepness factor of the function, 𝑧 – the input 
value to the neuron. 

 
Fig. 2. Structure of neural network 

The applied control law (15) leads to the description of a 
closed system (with feedback) in form (18), which, in the analysed 
example, takes the form: 

𝐴(𝑞)𝐸𝑠̇ = −𝐻(𝑞, 𝑞̇)𝐸𝑠 + 𝛹(𝑞, 𝑡) − 𝐾𝐷𝑠 + 𝑟 +

+ [
𝑊̃𝜏

𝑇𝛷𝜏(𝑥𝜏)

𝑊̃𝑛
𝑇𝛷𝑛(𝑥𝑛)

] + [
𝜀𝜏(𝑥𝜏)

𝜀𝑛(𝑥𝑛)
].  (41) 

The last two terms on the right side of the equation (41) re-

quire explanation. The terms 𝑊̃𝜏
𝑇𝛷𝜏(𝑥𝜏) and 𝑊̃𝑛

𝑇𝛷𝑛(𝑥𝑛) result 
from the inaccurate approximation of system nonlinearity by neu-
ral networks, which results from errors in the adaptation of the 

network weights 𝑊̃𝜏 and 𝑊̃𝑛. These adaptation errors are not 
known explicitly, because the ideal weights of neural networks are 
unknown. The last part results from the inaccuracy of approxima-
tion of nonlinear functions even by ideal neural networks that have 
finite mapping accuracy. This term is also not known in the open 

form. The last two expressions together with 𝛹(𝑞, 𝑡) are under-
stood as disturbances of the closed system and they constitute an 
excitation of error 𝑠. 

The desired trajectory of motion was adopted in accordance 
with the following equation: 

𝑐𝜏𝑑 = 𝑐𝜏𝑑(0) +
𝑣𝑚𝑎𝑥

𝑤𝜏
∑ 𝑙𝑛

(
1

𝑒−𝑤𝜏(𝑡−𝑡𝑐1𝑖)
+1)(

1

𝑒−𝑤𝜏(𝑡−𝑡𝑐4𝑖)
+1)

(
1

𝑒−𝑤𝜏(𝑡−𝑡𝑐2𝑖)
+1)(

1

𝑒−𝑤𝜏(𝑡−𝑡𝑐3𝑖)
+1)

3
𝑖=1  

 (42) 

where: 𝑐𝜏𝑑(0) – the initial position of the end-effector, 𝑣𝑚𝑎𝑥  – the 
maximum velocity, 𝑤𝜏 – the coefficient corresponding to the ve-

locity increase and decrease rate, 𝑡 ∈ (0,50) s. Function (42) 
and its first and second derivative in relation to time are limited. 

The trajectory of system in the normal direction is the pressure 
force on the surface of contact, which should be continuous, 
limited and not negative, and should continuously have the first 
and second derivative in relation to time. Such conditions are met 
by the function: 

𝐹𝑒𝑛𝑑 = 𝐹𝑒𝑛𝑚𝑎𝑥 ∑ [
1

1+𝑒−𝑤𝑛(𝑡−𝑡𝐹1𝑖)
−

1

1+𝑒−𝑤𝑛(𝑡−𝑡𝐹2𝑖)
]3

𝑖=1    (43) 

where: 𝐹𝑒𝑛𝑚𝑎𝑥  – the maximum pressure force, 𝑤𝑛 – the coeffi-
cient corresponding to the force increase and decrease rate, 

𝑡 ∈ (0,50) s. 
Parameters of the robot-environment dynamic system, pa-

rameters of the control system and the desired trajectory are 
summarized in Tables 1–3. 

In the analysed example, the contact surface is one-
dimensional; thus, there is only one tangent direction, along which 
the end-effector motion can occur. Figure 3 presents the desired 
motion path, displacement on the tangent direction, and pressure 
force in the normal direction. 

 
Fig. 3. Manipulator control purposes: a) motion path, b) desired 
           displacement on the tangent direction, c) desired pressure force 

Tab. 1. Parameters of robot-environment system used in numerical tests 

Parameter Unit Value 

𝑎1 kgm2 0.036 

𝑎2 kgm2 6∙10-5 

𝑎3 kgm2 0.031 

𝑎4 Nms 0.54 

𝑎5 Nms 0.51 

𝑎6 Nm 0.02 

𝑎7 Nm 0.02 

𝑎8 Nm 0.05 

𝑎9 Nm 0.025 

𝑙1 m 0.22 

𝑙2 m 0.22 

𝐾𝑒  N/m 1333 

𝜇 - 0.04 

𝜉 Nm 0.01 

The desired trajectory is planned so that during a move to the 
right, the manipulator end-effector exalts correct pressure, while 
during an end-effector return, there should be no pressure. Thus, 
there might be motion stages discerned: with pressure and with-
out pressure. Fig. 4 presents the control signals generated by the 
specific control subsystems. The total control signal in the task 
space presents Fig. 4a. In accordance to equation (15), it consists 
of PD control (Fig. 4b), compensative control (Fig. 4c), robust 
control (Fig. 4d), as well as control of normal force 𝜆1 and control 

compensating for friction influence 𝜆2 (Fig. 4e). 
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Tab. 2. Parameters of control system used in numerical tests 

Parameter Unit Value 

𝛬𝜏 s-1 3 

𝛬𝑛 s-1 34.6 

𝐾𝐷𝜏 kg/s 8 

𝐾𝐷𝑛 s 0.00173 

𝑘𝜏 - 0.2 

𝑘𝑛 - 0.2 

𝐾𝜏 N 0.001 

𝐾𝑛 N 0.01 

number of neurons - 15 

𝛤𝜏 - 4 ∙ 𝐼15𝑥15 

𝛤𝑛 - 0.0008 ∙ 𝐼15𝑥15 

𝑊̂𝜏(0) - 0 

𝑊̂𝑛(0) - 0 

𝑉̂𝜏(0) - rand{±0.5} 

𝑉̂𝑛(0) - rand{±0.5} 

𝛽 - 2 

𝑣𝑚𝑎𝑥 m/s 0.03 

𝑤𝜏 s-1 5 

𝐹𝑒𝑛𝑚𝑎𝑥 N -10 

𝑤𝑛 s-1 5 

𝑐𝜏𝑑(0) m 0.22 

Tab. 3. Parameters of desired trajectory used in numerical tests 

Parameter Unit Value 

𝑡𝐹11 s 3 

𝑡𝐹21 s 16 

𝑡𝐹12 s 3 

𝑡𝐹22 s 28 

𝑡𝐹13 s 3 

𝑡𝐹23 s 3 

𝑡𝑐11 s 5 

𝑡𝑐21 s 10 

𝑡𝑐31 s 12 

𝑡𝑐41 s 17 

𝑡𝑐12 s 19 

𝑡𝑐22 s 24 

𝑡𝑐32 s 26 

𝑡𝑐42 s 31 

𝑡𝑐13 s 33 

𝑡𝑐23 s 38 

𝑡𝑐33 s 40 

𝑡𝑐43 s 45 

PD control and compensative control pattern is typical for 
adapting systems, that is, PD control plays the largest role during 
the initial motion stage, when neural network weights estimates 
are unavailable and the compensative control is incorrect. Along 
with neural network weights estimates adaptation, the role of 
compensative control increases, while the role of PD control 
decreases. Force control is realised on the basis of the feedback 
loop and does not undergo adaptation. Fig. 4f presents the total 
control signal in the configuration space, which is a nonlinear 
mapping of the control signal in the task space. Due to practical 

reasons, knowledge of it is necessary to control the drives of the 
controlled object. 

 
Fig. 4. Control signals: a) total control, b) PD control, c) compensative 

control, d) robust control, e) control of normal force 𝜆2 and control 

compensating for friction influence 𝜆1, f) control signal in the con-

figuration space 

 
Fig. 5. Tracking errors: a) displacement on the tangent direction error,  
            b) pressure force error 

Tracking errors (Fig. 5) are typical for adapting systems, that 
is, the errors are the biggest during the initial control stage and 
then consequently they decrease, which is related to the neural 
network weights adaptation and increasingly better adjustment 
of the compensative control. 

5. CONCLUSIONS 

In the paper, the manipulator control algorithm is presented, 
which takes into account that the contact with flexible environment 
presented is unsusceptible to modelling imprecisions, both 
in terms of parameters and structure. It is possible due to the 
approximative features of artificial neural networks used for the 
compensation of system nonlinearity. Utilised system dynamics 
description and its control in a task space related to the environ-
ment space is very beneficial in practical applications, for which 
the main purpose is the realisation of the task of manipulator 
motion with a simultaneous pressure, utilised in process realisa-
tion. 
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