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Abstract: The paper presents novel boundary element technique for analysis of anisotropic thermomagnetoelectroelastic solids containing 
cracks and thin shell-like soft inclusions. Dual boundary integral equations of heat conduction and thermomagnetoelectroelasticity  
are derived, which do not contain volume integrals in the absence of distributed body heat and extended body forces. Models of 3D soft 
thermomagnetoelectroelastic thin inclusions are adopted. The issues on the boundary element solution of obtained equations  
are discussed. The efficient techniques for numerical evaluation of kernels and singular and hypersingular integrals are discussed. Nonlin-
ear polynomial mappings are adopted for smoothing the integrand at the inclusion’s front, which is advantageous for accurate evaluation  
of field intensity factors. Special shape functions are introduced, which account for a square-root singularity of extended stress and heat 
flux at the inclusion’s front. Numerical example is presented. 
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1. INTRODUCTION 

Rapid development of modern multi-field materials and micro-
electro-mechanical technologies raises increasing attention to 
their modeling and simulation. Particular interest is focused on the 
issues of fracture mechanics of cracked and inhomogeneous 
thermomagnetoelectroelastic (TMEE) materials. Since TMEE 
materials are anisotropic by nature, their analysis is more compli-
cated than those of isotropic materials. 

The boundary element method (BEM) is widely applied in the 
crack analysis (Aliabadi, 1997), since it allows accurate evaluation 
of field intensity factors at the crack front and requires only 
boundary mesh. Various boundary element techniques were 
proposed for 3D crack analysis in multi-field materials (e.g. see 
Pan and Yuan (2000), Rungamornrat et al. (2015), Muñoz-Reja et 
al. (2016)). Nevertheless, only recently (Pasternak et al., 2017) it 
was developed general 3D BEM for analysis of 3D cracks in 
anisotropic medium, which couples both thermal and magneto-
electro-mechanical fields. 

Another issue is the analysis of thin 3D inclusions. Various 
techniques are introduced to study soft or rigid inhomogeneities; 
however, they are mainly limited to the cases of planar perfectly 
rigid inclusions (Mykhas’kiv et al. (2010), Selvadurai (2000, 
2002)). Also the models of thin inclusions should be accounted for 
in the modeling of semi-permeable cracks. 

Therefore, this paper utilizes previously developed dual 
boundary integral equations (Pasternak et al., 2017) for obtaining 
the dual BEM for TMEE solids containing discontinuity surfaces 
(heat flux, stress, electric displacement, magnetic induction, tem-
perature, displacement, electric and magnetic potentials disconti-
nuity). Models of soft semi-permeable shell-like inclusions are 
introduced and incorporated in the obtained integral equations for 

obtaining the solution to 3D crack and inclusion problems. The 
issues on the efficient numerical evaluation of kernel functions, 
integration of singular and hypersingular integrals and accurate 
determination of field intensity factors are discussed in details. 

2. GOVERNING EQUATIONS OF HEAT CONDUCTION  
AND THERMOMAGNETOELECTROELASTICITY 

According to Pasternak et al. (2017), in a fixed Cartesian 
coordinate system 𝑂𝑥1𝑥2𝑥3 the equilibrium equations, the 
Maxwell equations (Gauss theorem for electric and magnetic 
fields), and the balance equations of heat conduction in the 
steady-state case can be presented in the following compact form 

𝜎̃𝐼𝑗,𝑗 + 𝑓̃
𝐼

= 0,  ℎ𝑖,𝑖 − 𝑓
ℎ

= 0, (1) 

where the capital index varies from 1 to 5, while the lower case 

index varies from 1 to 3, i.e. 𝐼 = 1,2, . . . ,5. 𝑖 = 1,2,3. Here and 
further the Einstein summation convention is used. A comma at 
subscript denotes differentiation with respect to a coordinate 

indexed after the comma, i.e. 𝑢𝑖,𝑗 = ∂𝑢𝑖 ∂𝑥𝑗⁄ . 

In the assumption of small strains and fields’ strengths the 
constitutive equations of linear thermomagnetoelectroelasticity in 
the compact notations are as follows (Pasternak et al., 2017): 

𝜎̃𝑗 = 𝐶̃𝐼𝑗𝐾𝑚𝑢̃𝐾,𝑚 − 𝛽̃
𝐼𝑗

𝜃,  ℎ𝑖 = −𝑘𝑖𝑗𝜃,𝑗, (2) 

where: 

𝑢̃𝑖 = 𝑢𝑖, 𝑢̃4 = ϕ, 𝑢̃5 = 𝜓; 𝑓̃
𝑖

= 𝑓
𝑖
, 𝑓̃

4
= −𝑞, 𝑓̃

5
= 𝑏𝑚;

𝜎̃𝑖𝑗 = 𝜎𝑖𝑗 , 𝜎̃4𝑗 = 𝐷𝑗 , 𝜎̃5𝑗 = 𝐵𝑗;

𝐶̃𝑖𝑗𝑘𝑚 = 𝐶𝑖𝑗𝑘𝑚 , 𝐶̃𝑖𝑗4𝑚 = 𝑒𝑚𝑖𝑗 , 𝐶̃4𝑗𝑘𝑚 = 𝑒𝑗𝑘𝑚 , 𝐶̃4𝑗4𝑚 = −𝜅𝑗𝑚,
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𝐶̃𝑖𝑗5𝑚 = ℎ𝑚𝑖𝑗 , 𝐶̃5𝑗𝑘𝑚 = ℎ𝑗𝑘𝑚, 𝐶̃5𝑗5𝑚 = −𝜇
𝑗𝑚

,

𝐶̃4𝑗5𝑚 = −𝛾
𝑗𝑚

, 𝐶̃5𝑗4𝑚 = −𝛾
𝑗𝑚

;
𝛽̃

𝑖𝑗
= 𝛽

𝑖𝑗
,

𝛽̃
4𝑗

= −𝜒
𝑗
, 𝛽̃

5𝑗
= 𝜈𝑗(𝑖, 𝑗, 𝑘, 𝑚 = 1,2,3);  (3) 

𝜎𝑖𝑗  is a stress tensor; 𝑓𝑖 is a body force vector; 𝐷𝑖  is an electric 

displacement vector; 𝑞 is a free charge volume density; 𝐵𝑖  is a 
magnetic induction vector; 𝑏𝑚 is a body current; ℎ𝑖 is a heat flux; 

𝑓ℎ is a distributed heat source density; 𝑢𝑖 is a displacement vec-

tor; 𝜙, 𝜓 are the electric and magnetic potentials, respectively; 𝜃 
is a temperature change with respect to the reference tempera-

ture; 𝐶𝑖𝑗𝑘𝑚 are the elastic stiffnesses (elastic moduli); 𝑘𝑖𝑗  are 

heat conduction coefficients; 𝑒𝑖𝑗𝑘 , ℎ𝑖𝑗𝑘  are piezoelectric and 

piezomagnetic constants; 𝜅𝑖𝑗 , 𝜇𝑖𝑗 , 𝛾𝑖𝑗  are dielectric permittivities, 

magnetic permeabilities and electromagnetic constants, respec-
tively; 𝛽𝑖𝑗 , 𝜒𝑖  and 𝜈𝑖  are thermal moduli, pyroelectric coefficients 

and pyromagnetic coefficients, respectively. 
Thus, the problem of linear thermomagnetoelectroelasticity is 

to solve partial differential equations (1) and (2) under the given 
boundary conditions and volume loading. Since magneto-electro-
mechanical fields do not influence temperature field in the consid-
ered problem (uncoupled thermomagnetoelectroelasticity) the first 
step is to solve the heat conduction equation and the second one 
is to determine mechanical, electric and magnetic fields acting 
in the solid. 

3. DUAL BOUNDARY INTEGRAL EQUATIONS AND MODELS 
OF 3D SOFT SHELL-LIKE INCLUSIONS 

For modeling of solids with thin inhomogeneities, a coupling 
principle for continua of different dimension is often used (Sulym, 
2007). This principle involves the replacement of a thin inclusion 
with a surface of a field discontinuity for stress, electric displace-
ment, displacement, electric potential, temperature, and heat flux. 
Frequently a median surface of a thin inhomogeneity is chosen as 
the discontinuity surface. The inclusion is thus removed from 
consideration as a geometrical object, and it is assumed that the 
thermal, electric and mechanical influence of the inclusion is 
reduced to the influence of the above-mentioned discontinuity 
surface (Fig. 1). Thus, according to a discontinuity function meth-
od (Sulym, 2007), the study of a stress state of a solid (an exterior 
problem) is reduced to the study of the influence of unknown 
discontinuity functions and is considered without account of the 
inclusion’s material properties. It is clear that the thermoelectroe-
lastic state of the solid depends on these discontinuity functions, 
material properties of the solid, the geometrical features of the 
problem, the contact conditions at the thin inhomogeneity inter-
face, and the external load. 

On the other hand, due to a small thickness of the inclusion, 
the extended tractions and displacements, temperature and heat 
flux at the faces of the inclusion are related with each other. Cor-
responding relations, which include thermo-magneto-electro-
mechanical properties of the inclusion and its thickness, are called 
the mathematical model of a thin inclusion. This model does not 
depend on the properties of a medium containing an inclusion, 
and it can be considered as an interior problem. There are only 
three basic requirements for the mathematical model of a thin 
inclusion (Sulym, 2007): (a) the number of equations should equal 
to the number of the unknown discontinuity functions; (b) the 
model should be simple for further solution of the obtained system 
of equations; and (c) the model should simulate essential features 

of thermoelectroelastic behavior of the inclusion. 

 
Fig. 1. Simplification of a thin inclusion 

Since the coupling principle and a discontinuity function meth-
od consider exterior and interior problems independently, several 
inclusion models, which simulate different features of the inhomo-
geneity, can be developed for the same exterior problem, and 
using the same inclusion model one can solve different exterior 
problems. 

According to the philosophy of the discontinuity function ap-
proach the exterior problem of 3D TMEE is reduced to the follow-
ing system of dual boundary integral equations (see Pasternak et 
al. (2017)): 

 heat conduction 

1

2
Σ𝜃(𝐱0) = ∬ Θ∗(𝐱, 𝐱0)Σℎ𝑛(𝐱)𝑑𝑆(𝐱)

𝑆

            −CPV ∬ 𝐻∗(𝐱, 𝐱0)Δ𝜃(𝐱)𝑑𝑆(𝐱)
𝑆

,

1

2
Δℎ𝑛(𝐱0) = 𝑛𝑖(𝐱0)[CPV ∬ Θ𝑖

∗∗(𝐱, 𝐱0)Σℎ𝑛(𝐱)𝑑𝑆(𝐱)
𝑆

                −HFP ∬ 𝐻𝑖
∗∗(𝐱, 𝐱0)Δ𝜃(𝐱)𝑑𝑆(𝐱)

𝑆
],

  (4) 

 TMEE 

1

2
Δ𝑡̃𝐼(𝐱0) = 𝑛𝑗 [CPV ∬ 𝐷𝐼𝑗𝐾(𝐱, 𝐱0)Σ𝑡̃𝐾(𝐱)𝑑𝑆(𝐱)

𝑆

            −HFP ∬ 𝑆𝐼𝑗𝐾(𝐱, 𝐱0)Δ𝑢̃𝐾(𝐱)𝑑𝑆(𝐱)

𝑆

 

            +CPV ∬ 𝑄
𝐼𝑗

(𝐱, 𝐱0)Δ𝜃(𝐱)𝑑𝑆(𝐱)
𝑆

            + ∬ 𝑊𝐼𝑗(𝐱, 𝐱0)Σℎ𝑛(𝐱)𝑑𝑆(𝐱)
𝑆

],
  (5) 

where Σf = f + + f −; Δf = f + − f −; np is a unit outwards nor-

mal vector to the surface S (or its faces S+ and S−), which re-

places an inclusion; t̃I = σ̃Ijnj is an extended traction vector; 

hn = hini; CPV stands for the Cauchy Principal Value of the 
integral, and HFP stands for the Hadamard Finite Part of the 
integral. All the kernels are given explicitly by Pasternak et al. 
(2017). 
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The interior problem is then solved as follows. Using the phi-
losophy of the discontinuity function method and the coupling 
principle (Fig. 1) for the development of a shell-like inclusion 
model, one withdraws the inclusion from consideration as a geo-
metrical object, and transfers the contact tractions, displacements, 
surface charges, electric potential, temperature, and heat flux onto 
its median surface S (accordingly onto the faces S+ and S−, 
Fig. 1). Thus, the problem is reduced to the determination of the 
thermomagnetoelectroelastic state of a solid with the surface S of 
thermo-magneto-electro-mechanical field discontinuities. After 
development of the interaction conditions for a thin inhomogeneity 
along with the integral equations (4)–(5) concerning abovemen-
tioned field discontinuities for a solid, the thermoelectroelastic 
state of the latter can be determined. 

Consider the thermomagnetoelectroelastic state at a certain 

point y on the median surface of a thin transversely isotropic 

pyroelectric inclusion. Assume that the Ox′3 axis of a local coor-
dinate system Ox′1x′2x′3 is directed along the normal vector 

n+(y) of the surface S+ at the point y. All vectors in the local 
coordinate system are related with those of the global one by the 

relations t′̃ I = ΩIJt̃J, t̃I = ΩJIt′̃J, where Ω is a rotation matrix. 

The origin of the local coordinate system is placed at the median 

surface of the thin inclusion. Thus, f̃(−h) = f̃ + and f̃(h) = f̃ −, 

where f̃ is one of the scalars θ, hn or vectors ũi, t̃i; 2h = 2h(y) 
is the thickness of the inclusion at y. With the account of the 

identity n± = −ni±, the conditions of a perfect thermal, mechan-
ical, magnetic and electric contact of the inclusion and the solid 

are θ± = θi±, hn
± = −hn

i±, ũi
± = ũi

i±, t̃i
± = −t̃i

i±. Here the 

non-italic superscript “i” denotes values concerned with the inclu-
sion. 

According to Eq. (2), heat flux and extended stress inside the 
inclusion in the local coordinate system equal 

ℎ′3 = −𝑘′
3𝑗

i
𝜃′

,𝑗
;     𝜎′̃ 𝐼3 = 𝐶′

i

𝐼3𝐾𝑚

𝑢′̃ 𝐾, 𝑚 − 𝛽′̃𝐼3i𝜃.  (6) 

Integrating Eq. (6) over the thickness of the inclusion one can 
obtain 

   i

3 3 33

i i

31 ,1 3 32 ,2 3 ,

h

h

h h

h h

h dx k h h

k dx k dx

 

 



 

       

      



 
 

   i

3 3 3 3

i i i

3 1 ,1 3 3 2 ,1 3 3 3.

h

I I K K K
h

h h h

I K K I K K I
h h h

dx C u h u h

C u dx C u dx dx



 



  

        

         



  
  (7) 

According to the mean value theorem, 

         

         

         

avr

3 3 3

i i

avr

3

avr

3 3 3

i i

2

,

2

;

2

.

h

h

n n n

h

h

h

I I
h

I I I

h dx h h

h h h h h h h

dx h

h h h h

dx h

h t h t h h t

 

  

 







   

      

  

      

  

        







y y y

y y y

y y y

  (8) 

For simplification of the model one can withdraw the interac-

tion of thermo-magneto-electro-mechanical fields in the directions 
normal and tangential to the inclusion’s median surface (as in the 
model of Winkler elastic foundation) by assuming that 

,1 3 ,2 3

,1 3 ,2 3

0, 0;

0, 0.

h h

h h

h h

K K
h h

dx dx

u dx u dx

 
 

 

    

    

 

 
  (9) 

In this case it is also assumed that 

  0nh y ,  0It  ,   (10) 

which allows to satisfy balance equations (1) identically. 
Then, according to Eqs. (6)–(9), one can obtain 

 
 
 

 

 
 

 
   

i

11

i

3 3 i

3

,

.

n

I K

I K I

k
h

h

C
t u

h



 


  


       

y
y y

y

y
y y y

y

   (11) 

Transforming (11) to global coordinates the following model of 
he thin thermomagnetoelectroelastic inclusion is obtained 

 
 
 

 

 
 
 

     

i

11 ;

.

n

k
h

h

h






  

   

y
y y

y

V y
Δt y Δu y v y y

y

   (12) 

Here T i

33
V Ω C Ω , T i

3
v Ω β . 

Reducing Eqs (4), (5), (10), (12) one obtains the sought sys-
tem of integral equations for a solid containing thin soft semi-
permeable shell-like inclusion 

 heat conduction 

 

       

i

11
0

**

0 0

2

HFP , ,i i

S

k

h

H n dS






 

 

x

x x x x x

   (13) 

 TMEE 

 

 
 

       

       

0

0

0 0

*

0 0

2

HFP ,

CPV , .

IK

K

j IjK K

S

Ij I

S

V
u

h

n S u dS

Q H v dS

  


 



     







x
y

x

x x x x x

x x x x x

   (14) 

Thus the problem is reduced to determination of unknown 
temperature and extended displacement discontinuities from the 
system of integral equations (13), (14). It should be mentioned 
that for the sake of compactness the terms accounting for external 
boundaries of the solid (which thermo-magneto-electro-
mechanical loading is assumed to be given) are not written here. 
The explicit expressions for integral equations of external problem 
accounting for external boundaries of a solid can be found in 
(Pasternak et al., 2017). These terms are just the regular inte-
grals, and for infinite medium they can be reduced to certain 
spatial functions. 
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4. NUMERICAL SOLUTION OF OBTAINED EQUATIONS 

Since the singularities of obtained kernels are the same as for 
3D cracks, the solution strategy is the same as presented in (Pas-
ternak et al., 2017). The median surface of thin inclusion 
is meshed with quadrilateral discontinuous boundary elements. 
Special shape functions are used to catch the square-root singu-
larity, which also arises at inclusions front (see Sulym (2007)). 
Numerical evaluation of singular and hypersingular integrals 
is held with the help of modified Kutt’s quadrature. Polynomial 
mappings are used to smoothen the integrand. 

According to Sulym (2007) the field intensity factors vector 
at some point of inclusion’s front is defined as 

𝐤̃
(1)

= lim
𝐱→𝐱(𝐴)

√
𝜋

8𝑠(𝐱)
𝐋 ⋅ Δ𝐮̃

∗(𝐱), (15) 

where k̃(1) = [KII, KI, KIII, KD, KB]T; KI, KII, KIII are the 
stress intensity factors; KD, KB are electric displacement and 

magnetic induction intensity factors; L is a Barnett – Lothe tensor 
evaluated in the local coordinate system; and s(x) is an arc 

length evaluated from x to the selected point along the cross 
section of the crack with the normal plane. 

These field intensity factors for soft semi-permeable inclusions 
are close to those of a crack; therefore, they can be accurately 
determined numerically by the technique proposed by Pasternak 
et al. (2017). 

5. NUMERICAL EXAMPLE 

Consider a transversely isotropic pyroelectric medium, which 
has the following properties of barium titanate (BaTiO3) (Dunn, 
1993): 

 elastic moduli (GPa): 𝐶11 = 𝐶22 = 150; 𝐶33 = 146; 

𝐶12 = 𝐶13 = 𝐶23 = 66; 𝐶44 = 𝐶55 = 44; 𝐶66 =
(𝐶11 − 𝐶12) 2⁄ = 42; 

 piezoelectric constants (C/m2): 𝑒31 = 𝑒32 = −4.35; 
𝑒33 = 17.5; 𝑒15 = 𝑒24 = 11.4; 

 dielectric constants (nF/m): 𝜅11 = 𝜅22 = 9.86775; 𝜅33 =
11.151; 

 heat conduction coefficients (W/(m·K)): 𝑘11 = 𝑘22 = 𝑘33 =
2.5; 

 thermal expansion coefficients (K-1): 𝛼11 = 𝛼22 = 8.53 ⋅
10−6; 𝛼33 = 1.99 ⋅ 10−6; 

 pyroelectric constants (GV/(m·K)): 𝜆3 = 13.3 ⋅ 10−6; 

 the rest of constants are equal to zero. 
Here the Voigt notation is used in the indices of elastic moduli 

and piezoelectric constants, which changes the index pairs in Eq 
(3) with a single index as 11 ↔ 1; 22 ↔ 2; 33 ↔ 3; 23,32 ↔
4; 13,31 ↔ 5; 12,21 ↔ 6. 

Consider the thermoelectroelastic problem for a penny-
shaped disk inclusion of radius R, which lays in the isotropy plane 

Ox1x2. The medium is loaded with uniform heat h0 flowing along 

the polarization direction Ox3, which does not cause tertiary 
pyroelectricity (Pasternak et al., 2014). The median surface of 
inclusion is meshed with only 12 quadrilateral discontinuous 
boundary elements (Fig. 2). 

 

 
Fig. 2. Boundary element mesh of the disk inclusion 

Four central boundary elements Nos 1–4 use general quadrat-
ic shape functions, while other elements (Nos 5–12) utilize special 
shape functions to account for the square root singularity of stress 
and heat flux at the inclusion front (Pasternak et al., 2017). 

Inclusion’s material is characterized by its relative rigidity, 
permeability and thermal conductivity, which are assumed the 

same in this study, i.e. 𝐶33
i = r𝐶33, 𝜅33

i = 𝑟𝜅33, 𝑘33
i = 𝑟𝑘33, 

where r is the dimensionless parameter. The thickness of inclu-

sion is equal to 2ℎ = 0.02𝑅. It is also assumed that the plane 

Ox1x2 has zero temperature (with respect to the reference one). 

The normalization factors are equal to 𝐾𝜎 = ℎ0𝛽11𝑅√𝜋𝑅 𝑘11⁄ , 

𝐾ℎ1 = −2ℎ0√𝑅/𝜋. 

Fig. 3 depicts normalized stress intensity factors at inclusion’s 

front for very small values of parameter r < 10−4. They are close 
to those calculated for a thermally insulated impermeable crack by 
Pasternak et al. (2017), which validates proposed model of thin 
shell-like soft weakly permeable inclusion. 

 
Fig. 3. Field intensity factors of a very soft inclusion 

Fig. 4 depicts change in field intensity factor KII depending 

on the parameter r. The normalization factor is KII of a corre-
sponding penny-shaped crack. 
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Fig. 4. Dependence of field intensity factor on 𝑟 

One can see that the field intensity factor decrease monoto-

nously on r. It is also visible that the proposed inclusion model 

does not sufficiently describe rigid inclusions. For r > 1 field 
intensity factors and thus discontinuity functions are zero, the 
same as for a homogeneous material without inclusion. Therefore, 
another models should be developed to address this case. 
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